SHORT TERM VOCATIONAL CERTIFICATE COURSE

COURSE NAME: SOLAR POWER TECHNICIAN (6 MONTHS)

PREPARED BY

Dr. E. Madhusudhan Raju Associate Professor of Mech. Engg., Univ. College of Engg, Osmania University, Hyderabad.

&

Dr. D. Raji Reddy Junior Lecturer in Mech. Engg., GOVT. JUNIOR COLLEGE, GAJWEL.

Course Coordinator:

Dr. R. JYOSTNA RANI Principal & Lecturer SIVE O/o Director of Intermediate Education, Hyderabad

STATE INSTITUTE OF VOCATIONAL EDUCATION DIRECTOR OF INTERMEDIATE EDUCATION HYDERABAD, TELANGANA

COURSE NAME: SOLAR POWER TECHNICIAN SECTOR: ENGINEERING

COURSE CODE: SPT

ENTRY QUALIFICATION: 10th passed

PRE-REQUISITES: The student should have the basic knowledge about solar panels, inverters, batteries and various applications of solar equipment.

Terminal competence: After completion of this course the students will be able to attend the installations and repairs of various types of solar installation systems.

Duration: 6 Months- (40 Hours: English + Course Content: 200 Hours)

Introduction:

Nowadays solar energy has become the most important energy source as an alternative energy supplement to the conventional source of energy which abundantly available in the nature at free of cost as well pollution free. The utilisation of equipments working with solar energy is increasing day by day, therefore it is necessary to train the men as the skilled men in this area to attend the solar energy equipment installations and as well as the repairs of all types of solar equipment.

Objectives:

- To equip students with the essential skills and knowledge to install, maintain, and troubleshoot solar power systems, ensuring they can effectively work with photovoltaic (PV) panels and related electrical components.
- To prepare students for immediate employment in the solar energy industry by providing hands-on training and practical experience with current technologies and industry-standard practices.
- To educate students on the principles of renewable energy and sustainable practices, emphasizing the environmental benefits and economic advantages of solar power solutions.

Skills:

• Proficiency in installing solar photovoltaic (PV) systems, including mounting panels, wiring, and connecting inverters.

- Knowledge of safety protocols and practices to prevent accidents and ensure safe working conditions during installation and maintenance.
- Providing technical support, addressing customer concerns/with installed systems and troubleshooting solar power systems to ensure efficient and reliable operation

ON THE JOB TRAINING & PRACTICAL:

- Work with local Solar installation systems.
- Work with local Solar equipment repair centres.
- Visit the Solar panels manufacturing units
- Visit the Solar equipment

COURSE SYLLABUS

THEORY

Unit No.	Unit Name
1	Introduction to Renewable energy sources
2	Solar Energy- Basic Physics & Basic Components of a solar (photo voltaic) system
3	Tools & Equipment used in solar (photo voltaic) systems
4	Solar home system sizing
5	Site Survey, Mounting structure and Installation of Solar PV System
6	Safety Precautions, Basic Maintenance & Trouble Shooting of PV Systems

PRACTICAL/OJT

Unit No.	Unit Name
1	Identification of components
2	Make a list of electrical gadgets in your home and college and note the voltage rating, power rating, whether works on AC or DC
3	Identify various tools and equipment

4	Use various tools to measure the voltage output, current				
	output, check polarity of the solar panel				
5	Demonstration of the parts of a inverter				
6	Battery voltage testing				
7	Size a system (providing specifications for the PV panels,				
	charge controller, battery and inverter) for TV, LAPTOP,				
	DESKTOP COMPUTER, Refrigerator, different kinds of				
	bulbs, Fans				
8	Installation of Solar system at a local clinic				
9	Installation of Solar system for operating a small fan by 24				
	Volts of DC				
	Performance of a Solar Panel in a Shade				
10	Practice on use of Electrical equipment, Practice on				
	Disconnection-Reconnection of Equipment				
9	Identify various Hazards & How They Can Be Prevented				
10	Importance of safety management and safety precautions to				
	be taken while operating the PV system				
11	Servicing and Maintenance of PV system components				
12	Trouble shooting cases				
	i. It has been sunny all day but there is not enough power				
	in your solar battery				
	ii. If there are frequent power blackouts				
	iii. You were watching television and the rooms were well				
	lit for several hours. Suddenly the television goes off				
	and you are in total darkness.				
	Identify the possible reasons and corrective actions to be				
	taken				

SCHEME OF INSTRUCTIONS:

- 1. Communicative English: 40 Hours
- 2. Course Content : 200 Hours

Duration of course	Theory		Practical/OJT		Total	
	Hours	weightage	Hours	weightage	Hours	Weightage
Module-1	60	30%	140	70%	200	100%
(06 Months)						

COURSE CONTENTS:

S.No	Units (Theory)	Periods (60 Hours)	Practical Lab/ OJT	Periods (140 Hours)
1	Unit-1 Introduction to Renewable energy sources 1.1 Energy Challenges in India 1.2 Introduction of energy (Renewable energy and Non-renewable energy) 1.3 Various types of Renewable energy 1.4 Advantages & disadvantages of Solar energy and other Renewable energies 1.5 Status of Renewable Energy in India 1.6 Solar Energy in India 1.7 Various applications of solar energy (Thermal and PV energy 1.8 Differentiate between Renewable and Non- Renewable energies 1.9 Solar radiation and its types.	06	Unit-1 Introduction to Renewable energy sources 1.Study on energy challenges in India 2. Identifying various renewable and non – renewable and non – renewable energy sources 3.Study on availability of various renewable energy sources in India 4. Study on State and Central schemes available in India for using solar energy. 5. list the applications of solar energy in India 6.Identify, note down or take photos of nearby solar installations and its effect	20
	Unit-2Solar Energy- Basic Physics& Components of SolarPower system2.1. A Brief Introduction to		Unit-2 Solar Energy- Basic Physics & Components of solar power system 7. Study of solar	

Ele	ctricity		system and its parts	
2.2.	•		8. Study of defining	
	source		& demonstration of	
	Solar Energy	12	various terms used in	20
	iversion	12	measuring electricity	20
	Definition of		i.e. power, voltage,	
	ar cell		current, resistance,	
	Ohm's Law:		energy and their	
	ctric Current,		relationships.	
	tage, and Resistance		9. Demonstration of	
	Work, Power and		types of currents and	
	ergy		their importance	
	Electrical and		10. Building basic	
Ele	ctronics components		electrical circuits i.e.	
	Measuring		Series wiring and	
	truments		Parallel wiring	
2.9.	Solar Module		connections	
2.10.	Grounding,		11 Demonstration of	
	thing and Lightning		earth solar budget	
	tection		12 Demonstration of	
2.11.	PV System		solar Energy	
Cor	nponents		conversion to	
			electricity and heat	
2.12.	Solar (PV) panels		power	
and	its types		13 Study of different	
2.13.	Inverters		types of solar panels.	
2.4.1Ty	pes of Inverters		14. Study of different	
2.4.2	Advantages of		types of inverters &	
	Inverters		charge controllers	
	Circuit diagram of		and it parts	
i i	inverter connection		15. Study of different	
2.14.	Charge		types of solar	
	trollers		batteries and its parts	
	vantages &		16. Practice of	
	advantages of		cabling connections	
	rge controller		to various equipment	
2.15.	Batteries		17. Practice of testing	
	Types of Batteries		of power supply to	
2.11	Battery energy		solar equipment	
storage an	d		18 study on the	

	ita ann dition		wonling of a latter	
	its condition		working of a battery	
	-DOD (Depth of		used in a solar PV	
	Discharge)		panel	
	-SOD (State of Discharge)		19 study on the	
	2.12 Advantages of		working of a inverter	
	Batteries		& charge controller	
			used in a solar PV	
			panel	
			20 Reading the	
			specifications given	
			in a PV panel	
			21Measuring the state	
			of the charge	
			22 Identifying	
			various DC and AC	
			loads	
			23 Study effects of a	
			bad installation	
			24 Study why a car	
			battery is not useful	
			for PV panel	
	Unit-3		Unit-3	
	Tools & Equipments used in		Practice on use of	
	solar (photo voltaic) systems		Electrical	
	3.1 Mechanical tools used in		equipment	
	the solar PV system		25 Using a	
	installation-spanner, drill		multimeter to	
	machine, hammer, chisel,		measure the voltage	
	grinder, torque wrench, LN		output,	
	keys, saw, power drill,		26 Using a	
	scrapers, screw driver.		multimeter to	
	•		measure the current	
	3.2 Electrical tools used in the		output,	
	solar system-mustimeter,		27 Using a	
3	clamp meter, earth tester /	12	multimeter to	30
-	megger, wire stripper, tester,		check polarity of the	
	electrical insulator, pliers,		solar panel	
	crimper.		28 Demonstration of	
	r · ·		working of an	
	3.3 Civil tools used in the solar		Inverter	
	5.5 Civil tools used in the solar			

1 1 1 1 1	20 11 :]
system-line dori, pickaxe,	_	
spud, mortar pan, spade, water		
level pipe, crowbar, pliers.	Voltage of a battery	
	30 List and Identify	
3.4 Marking tools used in the	the various	
solar system- compass,	mechanical tool	
measurement level, marking	31. Draw the image	
thread, angle finder tape, spirit	of the mechanical	
level.	tool and label it	
3.5 fasteners-types	32. Handling of the	
Solar intensity measuring	different mechanical	
instruments	tools (spanner, drill	
Pyranometer	machine, hammer,	
Pyrheliometer	chisel, grinder, torque	
Sunshine recorder.	wrench, LN keys,	
	saw, power drill,	
	scrapers, screwdriver)	
	33. Do the operations	
	like cutting, spanner,	
	drill machine,	
	hammer, chisel,	
	grinder, wrench, LN	
	keys, saw, power	
	drill, scrapers,	
	screwdriver	
	34.Identify the	
	various electrical tool	
	for the specific task	
	35. Handling and	
	operate the different	
	electrical tools, earth	
	tester, Wire stripper,	
	tester electrical	
	insulator, pliers,	
	crimper)	
	36. Study of	
	pyranometer and	
	identification of its	
	parts.	
	37. Practice of using	
	J7. Tractice of using	

]
	pyranometer to	
	record radiation.	
	38.Study of	
	pyrheliometer and	
	identification of its	
	parts.	
	39. Practice on using	
	of pyrheliometer to	
	record radiation	
	40. Study of solar	
	sunshine recorder and	
	its parts	
	41. practice on using	
	of sunshine recorder	
	to record solar	
	intensity.	
	42.Identify the	
	various Civil tools for	
	the specific task	
	43.Sketch the Civil	
	tool and label it	
	44.Demonstrate the	
	different Civil tools	
	(pickaxe, spud,	
	mortar pan, spade,	
	water level pipe,	
	crowbar, pliers)	
	45.Perform	
	practically all Civil	
	tool operations (like a	
	pickaxe, spud, mortar	
	pan, spade, crowbar,	
	and pliers)	
	46. Use of Measuring	
	tools compass,	
	measurement level,	
	marking thread, angle	
	finder tape, spirit	
	level	
	Unit-4	
L		

[]	Unit 4		Solon Home S	
	Unit-4 Solor Homo System Sizing		Solar Home System	
	Solar Home System Sizing		Sizing	
	4.1 Introduction to system		17 Study or	
	sizing		47 Study on	
	4.2 A sample design situation		Estimating electric	
	4.3 Design a standalone PV		loads	
	system for a household with a		48 Study on Sizing	
	TV, 4x15 Watt bulbs		and specifying PV	
	4.4 steps in system sizing		modules	
	process		49 Study on Sizing	
	4.4.1 load assessment		and specifying	
	4.4.2 PV module sizing		batteries	
	4.4.3 battery sizing		50 Study on	
	4.4.4 Charge controller sizing		Specifying a charge	
	4.4.5 Inverter sizing		controller	
	4.4.6 wire sizing		51 Study on Sizing	
4	4.4.1 load assessment	14	and specifying an	30
	4.5 Sunshine hours method		inverter	
	4.5.1 determine the load		52 Study on Sizing	
	4.5.2 determine the available		system wiring	
	sunshine hours		53 Size a system for	
	4.5.3 determine the PV panel		the following	
	size		(providing	
	4.5.4 determine the size of the		specifications for the	
	battery pack size		PV panels, charge	
	4.5.4 determine the size of		controller, battery	
	charge controller		and inverter	
	4.5.5 determine the size of the		TV, Refrigerator,	
	inverter to be used		Radio, laptop,	
	4.6Erection of solar panel		computer, light bulbs	
	stands		etc	
	4.7 Fixing of solar panels on			
	the stands			
	4.8 Installation of Inverter			
	4.9 Installation of Batteries			
	Unit-5		Unit-5	
	Site Survey, Mounting		54 Demonstration of	
	structure and Installation of		Parallel circuit	
	<u>Solar PV System</u>		55 Demonstration of	
			series circuit	

	5.1 The importance of Site		56 Performance of a	
	Survey and Customer		Solar Panel in a	
	satisfaction		Shade	
	5.2 Steps for safe installation		57 Erecting of solar	
5	of Solar PV system	10	panels stands practice	20
	5.3 Basic on Mounting		58 Practice of fixing	
	Structure and it's Types		solar panels on solar	
	5.4Install Civil and		stands.	
	Mechanical Parts of Solar PV		59 Practice of	
	System		installation of	
	5.5 Installation of Electrical		inverters	
	components		60.Practice of	
	5.6 Install of Solar		installation of	
	Photovoltaic Module		batteries	
			61. practice	
	5.7 Site Assessment		installation of solar	
	5.7.1 shading		water heater	
	5.7.2 orientation		62.Practice of solar	
	5.7.3 Tilt		lighting installation	
	5.8. Series type connections		63.practice of solar	
	of solar panels		water cooler	
	5.9. Parallel type connections		installation	
	of solar panels		64.Practiceof solar	
	5.10. Connecting a charge		refrigeration	
	controller		installation	
	5.11. Connecting a battery to		65. Practice of solar	
	solar system		agriculture pump	
	5.12. steps to connect a charge		installation, etc	
	controller to solar panel		66. Practice on	
	5.13 battery installation		Disconnection and	
	5.13.1 series connections of		reconnections of	
	batteries		-Solar water heater	
	5.13.2 Parallel connections of		-Solar lanterns	
	batteries		Solar lighting	
			-Solar water cooler	
	5.14 Installation of various		-Solar Refrigerator	
	solar power equipment like.,		-Solar water pump,	
	-Solar water heater		etc	
	- Solar Lighting			
	- Solar water cooler			

	 -Solar Refrigerator Solar Agriculture water pump, etc 5.15 Connections with cables to all these from solar panels. 5.16 Construction and working of 5.16.1 Solar water heater 5.16.2 solar lighting 5.16.3 Solar water cooler 5.16.4 Solar Refrigerator 5.16.5 Solar Agriculture pumpsetc 			
	Unit-6 Safety Precautions, Basic Maintenance & Trouble Shooting of PV Systems 6.1 Site Risk and Hazard		Unit-6 Safety Precautions, Basic Maintenance & Trouble Shooting of PV Systems	20
	Assessment 6.1.1 Risks at on-site work 6.1.2 PV PANEL	06	67 study on Importance of safety management and	20
6	 6.1.3 Charge controller & Inverter 6.1.4 Batteries 6.1.5 Cables 6.1.6 Appliances 6.1.3 On—Site work 6.2 Hazards & How They Can Be Prevented 6.2 Safety management Clothes 		safety precautions to be taken while operating the PV system 68 Servicing and Maintenance of PV system components 69 Trouble shooting cases i. It has been	
	Safety equipment Work plan Work at site 6.3 Safety precautions 6.4 Maintenance of system components 6.5 Wire and Earthing		sunny all day but there is not enough power in your solar battery ii. If there are frequent power	

Continuity Test	blackouts
6.6 Testing of CCR, Inverter	iii. You were
and Battery	watching
6.7 Trouble shooting of PV	television and
system	the rooms were
Solar panels	well lit for
Charge controller	several hours.
Batteries	Suddenly the
Wiring	television goes
6.8 Sample Test and	off and you are
Commission Record Sheet	in total
6.9 O & M of PV System	darkness.
6.10 Prepare Bill of Materials	Identify the possible
(BOM)	reasons and
6.11 Establish and Follow Safe	corrective actions to
Work Procedures	be taken
6.12 Use and Maintain	70 Attend the
Personal Protective Equipment	servicing and
(PPE)	maintenance of
6.13 Work Health and Safety	-Solar panels
at Heights	-Solar water heater
	-Solar lighting
	-Solar water cooler
	-Solar Refrigerator
	-Solar Agriculture
	water pumpetc
	71. Visit and study
	of:
	-Local Solar
	installation systems.
	-Local Solar
	equipment repair
	centres.
	-Solar panels
	manufacturing units
	-Solar equipment
	manufacturing units.

List of Tools and Equipment: (Each two No. at least)

A complete unit of Solar photovoltaic system model of solar photovoltaic power plant, Solar power meter (pyranometer), Solar photovoltaic inverter, energy meter, Battery, cable.

Tool kit, Electrician knife, water level indicator, PVC mallet, Fuse puller, Tong tester AC/DC, Multimeter,

Earthing rod, Soldering iron and flux, Phase sequence meter, Inclinometer. Clamp meter, earth tester, lux meter, drill machine and torque wrench, compass,

Spirit level/water level, drill machine, double-ended flat and ring spanner, combination plier, side cutting plier. Nose pliers, wire stripper, hacksaw frame with the blade, screwdriver, torque wrench, wire stripper, Measuring tape, line dori, plumb bob, Vernier caliper, Allen key set, Cable ties, Charge controller, Connecting wires, Lead solder, Load (AC/DC), Centre punch, Standard wire gauge, MC4 connectors, Mechanical fixtures required for panel installation, PUCs, Cable cutter, Screw driver set, solar chart, Solar conversion kits, Soldering flux, solar panels, soldering iron, wire stripper, safety helmet, safety belt, Nose mask, Safety goggles, ear plug, cotton hand glove,

Safety equipment: First-aid kit and other necessary equipment.

Basic Tools Needed for Installation

- Angle finder
- Torpedo level
- Fish tape
- Chalk line
- Cordless drill (14.4V or greater), multiple batteries
- Unibit and multiple drill bits (wood, metal, masonry)
- Hole saw
- Hole punch
- Torque wrench with deep sockets
- Nut drivers (most common PV sizes are 7/16", ¹/₂", 9/16")
- Wire strippers
- Crimpers
- Needle-nose pliers

- Lineman's pliers
- Slip-joint pliers
- Small cable cutters
- Large cable cutters
- AC/DC multimeter
- Hacksaw
- Tape measure

• Blanket, cardboard or black plastic to keep modules from going "live" during installation

- Heavy duty extension cords
- Caulking gun
- Fuse Pullers

Additional Tools to Consider (especially for multiple installations)

- DC clamp-on ammeter
- Reciprocating saw / Jig saw
- Right angle drill
- Conduit bender
- Large crimpers
- Magnetic wristband for holding bits and parts
- C-clamps
- Stud finder
- Pry bar

Tools for Battery Systems

- Hydrometer or Refractometer
- Small flashlight (to view electrolyte level)
- Rubber apron
- Rubber gloves
- Safety goggles
- Baking Soda (to neutralizer any acid spills)
- Turkey Baster
- Funnel
- Distilled Water

• Voltmeter

Tools and Accessories for SPV System testing and maintenance

The following major Tools and Accessories are required for overall SPV System testing and maintenance.

- 1. First & Kit
- 2. Multimeter
- 3. Clamp-meter
- 4. Electrical Power Testers
- 5. Energy meter
- 6. Insulation Resistance Testers
- 7. Disconnection Detector for DC Current Circuit (NSEI-100D)
- 8. PV Characterization Testers
- 9. Commissioning and Safety Testers
- 10. Solar Power and Thermal Testers
- 11. Irradiance Meters
- 12. Light meter
- 13. Distance meter
- 14. Hydrometer
- 15. Hygrometer
- 16. Portable Test Equipment
- 17. Wire strippers
- 18. Crimping tool
- 19. Soldering Iron
- 20. Battery terminal cleaner
- 21. Compass
- 22. Hammer
- 23. Flashlight
- 24. Paper/pencil
- 25. Safety goggles
- 26. Rubber gloves
- 27. Shoes
- 28. Cleaning brush etc.

Solar products:

- Home lighting system
- Solar lantern,
- Solar torch,
- Solar water heater,
- Solar cooker,
- Solar power bank,
- Solar street light,
- Solar e-rickshaw,
- Solar charging station

QUALIFICATION OF TEACHING FACULTY:

B.E./ B. Tech or its equivalent in Mechanical, Electrical and Electronics Engineering, from a recognized Institute /University, with 55% aggregate marks and at least 1-year work / teaching experience.

Or

Diploma in Mechanical and Electrical and Electronics Engineering from a recognized Institute/ University, with 55% aggregate marks and at least 2-years work / teaching experience

REFERENCE BOOKS/INTERNET:

1. PSS CENTRAL INSTITUTE OF VOCATIONAL EDUCATION

- 2. Intermediate Vocational Mechanical Engineering 2nd year text Book.
- 3. Skill course training handbook for solar PV trainer

DIVISION OF MARKS:

Theory: 100 Max Marks

1. Communicative English	: 20 Marks
2. Short Questions	: 6 X 5M = 30 Marks
3. Long Questions	: 4 X 10 = 40 Marks
4. Multiple Choice Questions	: 10 Marks
Practical: 100 Max Marks	
1. External	: 40 Marks
2. Record/Mini Project & Viva	: 10 Marks
3. Internship/ OJT	: 50 Marks

STATE INSTITUTE OF VOCATIONAL EDUCATION O/o DIRECTOR OF INTERMEDIATE EDUCATION, TELANGANA, HYDERABAD SHORT TERM VOCATIONAL CERTIFICATE COURSE

REGD. NO: L TIME : 3 HRS

MAX MARKS: 100

SOLAR POWER TECHNICIAN MODEL QUESTION PAPER (THEORY)

SECTION- A

COMMUNICATIVE ENGLISH 20 MARKS

SECTION- B

Note: a) Answer ALL questions.

b) Each question carries **5 Marks**.

6X5M=30 MARKS

- 1. Explain the advantages and disadvantages of using Solar PV technology and list at least 04 applications where solar PV technology can be used.
- 2. Compare various types of solar cells (i.e mono, crystalline, amorphous)
- 3. Write short notes on significance of an Inverter in the PV solar cell. List types of Inverters
- 4. A 12 V PV system has two DC appliances A and B requiring 15 and 20 W respectively. The average operational time per day is 6 hours for device A and 3 hours for device B. Calculate the daily energy requirements of the devices expressed in Ah
- 5. List various safety precautions that have to take while installing and working with a solar PV module.

6. What are the various hazards that can happen in a solar PV cell system and how they are prevented.

SECTION-C

Note: a) Answer any Four questions.

- b) Each question carries **10 Marks**. **4X10M=40 MARKS**
- **1.** List the components of a solar photovoltaic system and with a neat sketch, explain briefly the functions of each component.
- 2. Compare and contrast Renewable and Non Renewable Energy systems
- 3. Explain briefly about sunshine hours method
- **4.** Explain briefly the procedure adopted for sizing of a solar Photo voltaic system (i.e. sizing of PV module, battery, charge controller, Inverter, wires)
- 5. Assume you are watching television and the rooms are well lit using a solar PV module for several hours. Suddenly the television goes off and you are in total darkness. What could be the cause and what are the corrective actions to be taken

SECTION-D 10X1=10 Marks

- 1. A solar cell converts light energy into _____
 - a) Electrical energy b) Thermal energy c) Sound energy d) Heat energy
- 2. How much electrical energy is consumed if a 100-watt light bulb is used for 10 hours
- (a) 1000 w (b) 1KWh (c) 10 KWh (d) 10 KW
- 3. What is the resultant voltage when four 1.5V DC batteries are connected in series

(a) 4 (b) 6 (c) 12 (d) 1.5

4. Solar cells are made of

(a) conductors (b) semi-conductors (c) insulators (d) super conductors

5. Material used for making solar cell is _____

a) Silicon b) Carbon c) Sodium d) Magnesium

- 6. The efficiency of a solar cell may be in the range
 - a. 2 to 5% b. 10 to 15% c. 30 to 40% d. 70 to 80%
- 7. Which type of solar cells has highest efficiency:
 - a) Amorphous. b) Poly-crystalline. c)Mono-crystalline
- 8. All the electricity produced by the solar panels is produced as
 - a) AC. b) DC c) both DC and AC d) Neither AC nor DC
- 9. The initial cost of PV systems is
 - a) low b) medium c) High d) No relation
- 10. The efficiency of PV systems in general is
 - a) high b) low c) medium d) no relation

STATE INSTITUTE OF VOCATIONAL EDUCATION O/o DIRECTOR OF INTERMEDIATE EDUCATION, TELANGANA. NAMPALLY, HYDERABAD. <u>SHORT TERM VOCATIONAL CERTIFICATE COURSE</u> SOLAR POWER TECHNICIAN <u>MODEL QUESTION PAPER (PRACTICAL)</u>

Note: a) Answer any one of the questions.

b) Each question carries **40 Marks**. **4X10=40MARKS**

- 1. Use various tools to measure the voltage output, current output, check polarity of the solar panel
- 2. Demonstration of various parts of solar panel, Battery, inverter of a solar PV module.
- 3. Determine specifications for the PV panels, charge controller, battery and inverter used for powering Television.
- 4. Determine the Performance of a Solar Panel in a Shade

Record/Mini Project & Viva

10 Marks

Internship/OJT

50 Marks